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Abstract
In this work, we study the phenomenology of neutrinos and the formation of cosmic domain walls in
the NMSSM extended by an A4 × Z3 flavor symmetry. Neutrino masses result from the type I seesaw
mechanism using only two flavon fields and the NMSSM singlet S while their mixing is of Trimaximal
mixing form. We perform our phenomenological study in the normal mass hierarchy where we find that
observables like mββ, mβ, and ∑ mi can be tested by future experiments. Due to the difference between
the A4 subgroups that undergo spontaneous breaking in both the charged lepton and neutrino sectors, the
resulting domain walls in each sector exhibit distinct structures. We delve into the details of the breaking
patterns within these two sectors, and we introduce a nuanced geometric representation for them. To tackle
the domain wall problem, we explore a well-established method involving the explicit breaking of the
flavor symmetry. This is achieved through the introduction of Planck-suppressed operators induced by
supergravity.
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1. INTRODUCTION
The interplay between spontaneous symmetry breaking (SSB), discrete symmetries, and the flavor problem is a fascinating aspect
of particle physics, where theoretical models seek to explain observed phenomena at the quantum level. In particular, addressing
the hierarchical structure and mixing patterns in fermion masses beyond the Standard Model (SM) presents a prominent challenge
in particle physics. Non-Abelian flavor symmetries play a crucial role in addressing the flavor problem, and their use in model
building became common after the observation of large leptonic mixing angles by neutrino oscillation experiments [1, 2, 3]. The
SSB of these discrete symmetries is the most important ingredient to achieve realistic fermion masses and mixing angles at low
energies. It is achieved when gauge singlet flavon fields, which transform non-trivially under the flavor symmetry, acquire vacuum
expectations values (VEVs) along specific directions in flavon space.

On the other hand, the SSB of discrete symmetries leads to the formation of two-dimensional defects, called domain walls (DWs)
with potential cosmological implications [4, 5]. These DWs form at the boundaries of distinct degenerate vacua created during the
phase transition associated with SSB. In the context of non-Abelian discrete symmetries, SSB typically occurs partially, resulting in
residual subgroups within different fermion sectors due to the VEV alignments of flavon fields. The number of degenerate vacua
is determined by the order of the broken subgroups, while the regions between these vacua represent the DWs whose energy
density may conflict with cosmological observations if it dominates the total energy density of the Universe. This happens in the
so-called scaling regime in which the energy density of DWs scales in terms of the cosmological expansion factor a(t) as a−1 [6, 7, 8],
decreasing more slowly than radiation (scaling as a−4) or matter (scaling as a−3) [4, 5, 9]. Basically, if the flavor-breaking scale is
comparable to the inflationary scale, it is reasonable to assume that the Universe has expanded enough for the walls to be inflated
beyond the present horizon. However, if the flavor-breaking scale is lower than the inflationary scale, the energy density of the
walls becomes the subdominant contribution to the total energy density of the Universe [10, 11]; this is known as the DW problem
[4].

In this paper, based on our recent works [12, 13], we investigate the predictions of neutrino masses and mixing within the
framework of a flavored next-to-minimal supersymmetric Standard Model (FNMSSM), where the flavor symmetry is given by
GF = A4 × Z3. The motivation behind the NMSSM comes from the consequences associated with its singlet superfield, see Refs.
[14, 15, 16] for more details. In our scenario, to achieve realistic light neutrino masses through the type I seesaw mechanism, three
right-handed neutrinos and two flavon fields are introduced. Meanwhile, the NMSSM singlet S plays a crucial role in achiev-
ing neutrino mixing that aligns with the Trimaximal mixing matrix [17, 18, 19, 20, 21, 22, 23]. We have studied numerically the
phenomenology associated with neutrino sector in the normal mass hierarchy (NH) case. We found that upcoming experiments
can test our predictions for the effective Majorana mass mββ relevant for neutrinoless double beta decay experiments (0νββ), the
effective mass of electron antineutrinos mβ measured in beta decay experiments, and the total mass of the three active neutrinos
constrained by cosmological observations.
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Furthermore, we investigate the partial breaking of A4, and we focus on patterns with two different residual symmetries1: A4 →
Z3 in the charged lepton sector and A4 → Z2 in the neutrino sector. For the first breaking pattern, the broken part of A4 is given by
the Klein four group Z2 × Z2 of order four. In this case, DWs manifest as boundaries that separate four degenerate vacua. For the
second breaking pattern, the broken part of A4 is given by the non-Abelian group Z2 × Z3 of order six. In this case, DWs manifest
as boundaries that separate six degenerate vacua. By representing the degenerate vacua as vectors in flavon space, we observe that
DW networks in both sectors can be represented by Platonic solids: a Tetrahedron for A4 → Z3 and an Octahedron for A4 → Z2. In
the charged lepton sector, DWs emerge around the inflationary scale without conflicting with cosmological observations. However,
in the neutrino sector, the breaking occurs below the inflationary scale, requiring the annihilation of corresponding DWs before the
epoch of big bang nucleosynthesis according to standard cosmology. Following [4], we show that explicitly breaking the Z2 ⋊ Z3
subgroup of A4 at high energy using Planck-suppressed higher-dimensional operators can eliminate the degeneracy among the
six degenerate vacua. Notably, the low-energy behavior of the theory remains mostly unchanged as long as these operators are
suppressed by powers of the Planck scale.

2. IMPLEMENTING A4 IN THE LEPTON SECTOR OF THE FNMSSM
In this section, we examine the neutrino masses and mixing within the framework of the FNMSSM where the flavor symmetry
is given by G f = A4 × Z3. In order to account for neutrino oscillation data, the A4 group must undergo spontaneous breaking,
resulting in the emergence of cosmic domain walls. The Z3 symmetry, on the other hand, is primarily introduced to distinguish
between the flavon superfields used in the charged lepton and neutrino sectors. A4 has four irreducible representations: one triplet
and three singlets which we denote here by their basis characters as 3(−1,0), 1(1,1), 1(1,ω), and 1(1,ω2). This notation provides a
nuanced approach for differentiating the three one-dimensional representations by the characters of the two generators of A4 (see
the appendix for more details). In order to prevent any confusion between the characters associated with the additional Z3 and the
Z3 subgroup of A4, we represent the three one-dimensional representations of the former as 11, 1Q, and 1Q2 , where Q = e2πi/3.

By focusing on the lepton sector, our FNMSSM prototype incorporates, in addition to the conventional superfields of the MSSM
and the NMSSM singlet S the following additional superfields: (1) three right handed neutrinos Nc

i = (Nc
1 , Nc

2 , Nc
3) essential for

generating neutrino masses through the type-I seesaw mechanism, and (2) three flavon superfields denoted as Φ, Ω, and χ. These
flavon are necessary for generating appropriate neutrino masses and mixing, as well as contributing to the resolution of the DW
problem. The quantum numbers for both the additional fields and the MSSM fields under the SU(2)L × U(1)Y and the A4 × Z3
symmetries are detailed in Table 1.

Superfields Li ec µc τc Nc
i Hu Hd Φ Ω S χ

SU(2)L × U(1)Y (2,-1) (1,2) (1,2) (1,2) (1,0) (2,1) (2,-1) (1,0) (1,0) (1,0) (1,0)
A4 3(−1,0) 1(1,ω2) 1(1,ω) 1(1,1) 3(−1,0) 1(1,1) 1(1,ω) 3(−1,0) 3(−1,0) 1(1,ω2) 1(1,1)
Z3 1Q 1Q 1Q 1Q 1Q2 11 1Q 11 1Q2 1Q2 1Q2

TABLE 1: Superfields and transformation properties under SU(2)L × U(1)Y group and the A4 × Z3 flavor symmetry.

By using these field transformations, the most general chiral superpotential for leptons invariant under SU(2)L × U(1)Y × G f
is given by

WY =
yijk

Λ
LiEj HdΦk + yijLi Nc

j Hu + λχχNc Nc + λΩΩNc Nc + λSSNc Nc, (1)

where Li denotes the three left handed lepton doublets, Ec
j = (ec, µc, τc) is the three right handed charged leptons, and Hu and Hd

are the two Higgs doublets of the MSSM. The first term in equation (1) is responsible for the charged lepton masses, the second term
gives rise to the Dirac mass matrix, while the remaining terms are responsible for RH neutrino masses. Following the breaking of
gauge and flavor symmetries, the masses of charged leptons and neutrinos are obtained through their interactions with the scalar
components of the scalar superfields. The specific VEV alignments that adhere to neutrino data and minimize the scalar potential
of the model are given by

⟨Φ⟩ = υΦ(1, 0, 0), ⟨Ω⟩ = υΩ(1, 1, 1), ⟨χ⟩ = υχ, ⟨Hu,d⟩ = υu,d, ⟨S⟩ = υS . (2)

Then, according to the superfield transformations in Table 1 and the A4 tensor product rules given in the appendix, the charged
leptons, Dirac and RH neutrinos mass matrices are given respectively as follows2:

Ml =
υdυΦ

Λ

ye 0 0
0 yµ 0
0 0 yτ

 , MD = Y0υu

1 0 0
0 0 1
0 1 0

 , MR =


a +

2b
3

− b
3
+ ϵ − b

3
− b

3
+ ϵ

2b
3

a − b
3

− b
3

a − b
3

2b
3

+ ϵ

 , (3)

1The extra Z3 discrete group differ from the Z3 subgroups of the A4 symmetry, see [12] for more details.
2Further details regarding the derivation of these matrices can be found in [12].
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where a = 2λχυχ, b = 2λΩυΩ, and ϵ = 2λSυS . The obtained mass matrix for charged leptons is diagonal with the mass eigenvalues
given as

me = ye
υdυΦ

Λ
, mµ = yµ

υdυΦ
Λ

, mτ = yτ
υdυΦ

Λ
. (4)

For neutrinos, the Majorana mass matrix MR exhibits the magic symmetry referring to the fact that the sum of each column and
row is equal [24]. This type of matrices are diagonalized by the well-known Trimaximal mixing matrix defined as [17, 18, 19, 20, 21,
22, 23]

UTM2 =



√
2
3

cos θ
1√
3

√
2
3

sin θe−iσ

− cos θ√
6

− sin θ√
2

eiσ 1√
3

cos θ√
2

− sin θ√
6

e−iσ

− cos θ√
6

+
sin θ√

2
eiσ 1√

3
− cos θ√

2
− sin θ√

6
e−iσ

 . (5)

The parameters a, b and ϵ in MR have a dimension of mass and at least one of them must be complex in order to account for
CP violation in the lepton sector. The optimal choice can be deduced by noticing that when ϵ → 0, MR is diagonalized by the
tribimaximal mixing (TBM) matrix which is known to be incompatible with the present neutrino oscillation data and it is CP
conserving [25]. Therefore, ϵ is responsible for a small deviation of the neutrino mixing angles from their TBM values and it is taken
to be complex (ϵ = |ϵ|eiϕϵ ) to account for the CP violation in the neutrino sector. Moreover, since this parameter is proportional to
the VEV of the NMSSM singlet S known to acquire a VEV of the order of MSUSY , the modulus of ϵ must satisfy: |ϵ| < a, b. Now,
let us proceed to compute the masses, starting with the three Majorana masses Mi=1,2,3. These masses are determined through
the diagonalization of the right-handed neutrino mass matrix MR using the Trimaximal mixing matrix as (U∗

TM2
)T MRU∗

TM2
=

diag(M1, M2, M3) where

M1 = a + b − |ϵ|
2

+ O
(
|ϵ|2
a2

)
, M2 = a + |ϵ|, M3 = b − a +

|ϵ|
2

+ O
(
|ϵ|2
a2

)
. (6)

The diagonalization of MR is performed under the fulfillment of the following relations between the model parameters {a, b, |ϵ|, ϕϵ}
and the Trimaximal mixing parameters θ and σ

tan 2θ =
|ϵ|

√
3b2 cos ϕ2

ϵ + 3a2 sin ϕ2
ϵ

b|ϵ| cos ϕϵ − 2ba
, tan σ =

a
b

tan ϕϵ. (7)

At this point, we can calculate the light neutrino masses via the type-I seesaw mechanism formula mν = mT
D M−1

R mD.
Given that MR is diagonalized by UTM2 given in equation (5), the inverse Majorana neutrino mass is expressed as M−1

R =

U∗
TM2

[diag(M1, M2, M3)]
−1(U∗

TM2
)T . Moreover, due to the form of the Dirac mass matrix MD, see equation (3), the diagonalization

of mν remains of Trimaximal form, but with the interchange of the second and the third row of UTM2 . We shall denote the new form
of the Trimaximal mixing matrix as ŨTM2 and thus, the light neutrino masses are given by (ŨTM2 )

TmνŨTM2 = diag(m1, m2, m3)
where mi = Y2

0 υ2
u/Mi. To make our upcoming numerical study more straightforward, we redefine these masses as a function of

O(1) parameters as follows:

m1 =
2m0

2 + 2kab − kϵb
, m2 =

m0
kab + kϵb

, m3 =
2m0

2 − 2kab + kϵb
, (8)

where m0 = Y2
0 υ2

u/b, kab = a/b and kϵb = |ϵ|/b. Regarding the neutrino mixing angles, we can easily derive their expressions
from their respective definitions: sin2 θ13 = |Ũe3|2, sin2 θ12 = |Ũe2|2/(1 − |Ũe3|2), and sin2 θ23 = |Ũµ3|2/(1 − |Ũe3|2), where Ũe2,
Ũe3 and Ũµ3 represent the (12), (13) and (23) entries of the Trimaximal mixing matrix ŨTM2 , respectively. Thus, we conclude that
the expression for these mixing angles are given by

sin2 θ13 =
2
3

sin2 θ, sin2 θ12 =
1

3 − 2 sin2 θ
, sin2 θ23 =

1
2
+

√
3 sin 2θ

2
(
3 − 2 sin2 θ

) cos σ. (9)

3. DOMAIN WALLS FROM SPONTANEOUS BREAKING OF A4

In this section, we examine the formation of DWs and depict them geometrically in the context of two A4 breaking patterns, i.e.,
A4 → Z3, A4 → Z2. To simplify things, we use the fact that A4 is isomorphic to (Z2 × Z2)⋊ Z3, where (Z2 × Z2) is the Klein
four-group which will be referred to as K4 in subsequent discussions. Let us start by delving into the different breaking patterns
within the basis provided in equation (A.1) of the appendix:

(i) A4 → Z3: Let us denote the isomorphic group of A4 as A4 ∼= ZS
2 × ZTST2

2 ⋊ ZT
3 where the exponents represent the generator

for each abelian subgroup of A4. Accordingly, the breaking pattern A4 → ZT
3 is realized in the charged leptons sector
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when the flavon triplet Φ acquires its VEV along the direction ⟨Φ⟩ = (1, 0, 0)T . This can be easily checked using the matrix
representations for the generators S and T provided in the appendix where we find

S⟨Φ⟩ ̸= ⟨Φ⟩, TST2⟨Φ⟩ ̸= ⟨Φ⟩, T⟨Φ⟩ = ⟨Φ⟩. (10)

This equation makes it clear that among the symmetries, only ZT
3 remains unbroken. On the other hand, the part that un-

dergoes breaking is given by the Klein four group K4 = ZS
2 × ZTST2

2 . It is crucial to emphasize that choosing the third ZT2ST
2

subgroup within A4 instead of either ZS
2 or ZTST2

2 yields to the same outcomes. This arise because the generator T2ST of
this group does not preserve the VEV of Φ, i.e., T2ST⟨Φ⟩ ̸= ⟨Φ⟩. On the other hand, we cannot choose the other three Z3
subgroups within A4—namely, ZST

3 , ZTS
3 , and ZSTS

3 —instead of ZT
3 . This is because they all modify the VEV structure of Φ

leading to the breaking of the Z3 symmetry, i.e., ST⟨Φ⟩ ̸= ⟨Φ⟩, TS⟨Φ⟩ ̸= ⟨Φ⟩, and STS⟨Φ⟩ ̸= ⟨Φ⟩.

(ii) A4 → Z2: We employ the same generators for the isomorphic group as in the previous breaking pattern. Let us assume that
the residual symmetry is the ZS

2 group. Thus, the breaking pattern A4 → ZS
2 in the neutrino sector is realized when the

flavon triplet Ω acquires its VEV along the direction ⟨Ω⟩ = (1, 1, 1)T . As in the previous case, we can verify this breaking
pattern using the matrix representations for the generators S and T, and show that the only conserved symmetry is the that
of the generator S. We have

S⟨Ω⟩ = ⟨Ω⟩, TST2⟨Ω⟩ ̸= ⟨Ω⟩, T⟨Ω⟩ ̸= ⟨Ω⟩. (11)

This breaking pattern does not occur when considering the residual group as either of the remaining two Z2 subgroups
within A4, namely, ZTST2

2 and ZT2ST
2 . This restriction arises from the fact that both of these subgroups undergo breaking due

to the VEV direction of Ω. Conversely, choosing any of the alternate Z3 subgroups within A4 instead of ZT
3 poses no issue,

as they are also broken by the VEV of Ω. Specifically, conditions such as ST⟨Ω⟩ ̸= ⟨Ω⟩, TS⟨Ω⟩ ̸= ⟨Ω⟩, and STS⟨Ω⟩ ̸= ⟨Ω⟩
are satisfied.

(iii) A4 → K4: The A4 group has only one K4 subgroup generated by {S, TST2}. As we showed in the previous breaking patterns,
the action of TST2 on ⟨Φ⟩ and ⟨Ω⟩ modifies the VEV directions of the flavon triplets. Consequently, these flavon triplets
cannot be employed for the breaking pattern A4 → K4. On the other hand, this breaking pattern can be realized by any
scalar field transforming as a nontrivial singlet. Indeed, the VEV of the NMSSM singlet S transforming as 1(1,ω2) remains
unchanged under the operations of the generators of K4 (S and TST2). As a result, ⟨S⟩ breaks A4 down to its Klein four
group K4. In this case, the broken part corresponds to the abelian group Z3, and it can be chosen from any of the four Z3
subgroups within A4, given that their generators all modify the VEV of the NMSSM singlet, i.e., T⟨S⟩ ̸= ⟨S⟩, ST⟨S⟩ ̸= ⟨S⟩,
TS⟨S⟩ ̸= ⟨S⟩, and STS⟨S⟩ ̸= ⟨S⟩. It is important to note that this discussion is purely based on mathematical considerations
and that these four Z3 subgroups of A4 are conjugate to each other. However, once a generator is chosen for a subgroup, it
must be consistently maintained throughout the analysis.

Now, we examine the induced DWs within both the charged lepton and neutrino sectors, illustrating a nuanced approach to
geometrically represent them for each breaking pattern. Given that these breaking patterns emerge when flavon fields attain VEVs
along particular directions within the flavon space, it is essential to accurately define this space in which we will depict the DWs.
Since there are two possible dimensions for the irreducible representations of A4, our approach revolves around visualizing the
flavon space as a (3 + 1)-dimensional vector space denoted by V in what follows. Here, 3 and 1 represent the dimensions of the
triplet and the singlets of A4, respectively. Consider the components of this vector space labeled as V = (X1, X2, X3, X4) ∈ C4

where the Xi’s stand for a system of vector basis with the first three components are reserved for A4 triplets, while the forth one is
designated for A4 singlets. Thus, the nontrivial scalar superfields Φ and Ω along with the NMSSM singlet S are expanded within
the flavon space in terms of the components of the complex 4D vector space V as3 Φ ∼ ΦiXi, Ω ∼ ΩiXi, and S = SX4 where
i = 1, 2, 3. Representing DWs graphically becomes a challenging task due to the complex nature of these superfields and their
scalar components that acquire VEVs. Hence, to represent the DWs by real geometrical objects such as real quivers, we adopt the
methodology outlined in [12, 13]. This relies on splitting the components of the scalar superfields and the vector space V into real
and imaginary parts as ϕk = ℜ(ϕk) + iℑ(ϕk) and Vk = ℜ(Uk) + iℑ(Rk) where k = 1, 2, 3, 4 while Uk and Vk are real 4D vectors
forming the constituents of Xk expressed as Xk = (Uk, Rk)

T . Accordingly, the complex 4D expansion ϕ ∼ ϕkXk is expressed with
this splitting as a real 8D vector given by

ϕ ∼ ∑
k
[ℜ (ϕk)Uk +ℑ (ϕk) Rk] ∈ R8, with k = 1, 2, 3, 4. (12)

Let us elaborate on this by considering a specific example of a VEV direction with complex entries. Assuming a breaking pattern
of A4 → ZTS

3 . Given the generator TS of Z3, this breaking occurs when a flavon triplet φ, attains a VEV along the direction
⟨φ⟩ = υφ(1,−2ω,−2ω2)T where ω = −1/2 + i

√
3/2. In this scenario, the representation of ⟨φ⟩ in the real basis is expressed as 6D

vector in R6

⟨φ⟩ = υφ

(
1, 0, 1,−

√
3, 1,

√
3
)

. (13)

3Generally, we can use a collective flavon superfield ϕ ∼ ϕk Xk where k = 1, 2, 3, 4. Hence, we may think of the linear combinations of these X’s components as
forming the basis of the the flavon space.
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Geometrically, the flavon VEV responsible for the breaking of A4 can be represented as a vector aligned along one of the real
directions within the vector space (Uk, Rk) where the components of the vector correspond to its coordinates within this space.
Then, the transformations imposed on the flavon VEV by the elements of the A4 group result in the establishment of coordinates
for the remaining vertices, eventually shaping a polygon within the vector space (Uk, Rk). The number of vertices equals to the
number of degenerate vacua, i.e., the order of the broken group. Let us explore this in our model for the breaking patterns realized
in the charged lepton and neutrino sectors.

FIGURE 1: A regular Tetrahedron (left) and a regular Octahedron (right) viewed from the flavon space. The vertices represent
the degenerate vacua, while the edges that connect them stand for DWs. In these Platonic solids, the central point O reflects the
complete A4 symmetry.

As explained previously, the breaking pattern A4 → ZT
3 manifests in the charged leptons sector when the flavon triplet Φ

obtains a VEV along the direction ⟨Φ⟩ = υΦ(1, 0, 0)T . This breaking scenario can be represented as ZS
2 × ZTST2

2 ⋊ ZT
3 → ZT

3 , where
the broken subgroup ZS

2 × ZTST2

2 is isomorphic to the Klein four group K4 with an order of four. Consequently, there exist four
degenerate vacua {ϕ1, ϕ2, ϕ3, ϕ4} associated with this breaking pattern, situated within the flavon space. These vacua collectively
define the vertices of a Platonic solid, specifically a Tetrahedron, as depicted in the left panel of Figure 1. One of the vertices of the
Tetrahedron corresponds to the K4-invariant vacuum employed in the A4 → ZT

3 breaking. To derive the remaining three vacua, we
apply the generators of K4 to ⟨Φ⟩ as follows:

ϕ1 = ⟨Φ⟩ , ϕ2 = S ⟨Φ⟩ , ϕ3 = TST2 ⟨Φ⟩ , ϕ4 = T2ST ⟨Φ⟩ . (14)

Using the matrix representations of the generators S and T in equation (A.1) of the appendix, it is easy to deduce the expressions
of these vacua in the complex three-dimensional space C3

ϕ1 = υΦ

1
0
0

 , ϕ2 =
υΦ
3

−1
2
2

 , ϕ3 =
υΦ
3

−1
2ω2

2ω

 , ϕ4 =
υΦ
3

−1
2ω
2ω2

 . (15)

In the real vector basis (12), these vacua are expressed following the same procedure used to obtain equation (13). Therefore, for
the triplets ϕi we have

ϕ1 = υΦ(1, 0, 0, 0, 0, 0)T ,

ϕ2 =
υΦ
3
(−1, 0, 2, 0, 2, 0)T ,

ϕ3 =
υΦ
3

(
−1, 0,−1,−

√
3,−1,

√
3
)T

,

ϕ4 =
υΦ
3

(
−1, 0,−1,

√
3,−1,−

√
3
)T

.

(16)

These four vectors satisfy the constraint ∑4
i−1 ϕi = 0, a property that characterizes a Tetrahedron with 4 vertices, 4 faces and 6

edges. These edges represent the DWs separating the vacua as illustrated in the left panel of Figure 1. Moreover, by examining
these vectors, it is clear that the structure resembles a regular Tetrahedron where all sides form equilateral triangles, and we have
confirmed that all edges share the same length, specifically υΦ

√
8/3.

In the neutrino sector, the breaking pattern A4 → ZS
2 is realized when the flavon triplet Ω acquires a VEV along the direction

⟨Ω⟩ = υΦ(1, 1, 1)T . This breaking can be expressed as ZS
2 × ZTST2

2 ⋊ ZT
3 → ZS

2 , where the broken part of A4 is given by the
non-Abelian group ZTST2

2 ⋊ ZT
3 with an order of six. Consequently, six degenerate vacua {ϕ′

1, ϕ′
2, ϕ′

3, ϕ′
4, ϕ′

5, ϕ′
6} are associated with

this breaking pattern and are fixed in the flavon space. These vacua define the vertices of a Platonic solid, specifically a regular
Octahedron, as depicted in the right panel of Figure 1. One of the vertices of this Octahedron corresponds to the ZTST2

2 ⋊ ZT
3 -

invariant vacuum employed in the A4 → ZS
2 breaking, ϕ′

1 = ⟨Ω⟩. To derive the remaining five vacua, we apply the generators of
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ZTST2

2 ⋊ ZT
3 to ⟨Ω⟩ as follows:

ϕ′
1 = ⟨Ω⟩ , ϕ′

2 = TST2 ⟨Ω⟩ , ϕ′
3 = T ⟨Ω⟩ , ϕ′

4 = TS ⟨Ω⟩ , ϕ′
5 = T2 ⟨Ω⟩ , ϕ′

6 = TST ⟨Ω⟩ . (17)

Using the matrix representations of the generators S and T in equation (A.1), the expressions of these vacua in the complex three-
dimensional space C3 are given by

ϕ′
1 = υΩ

1
1
1

 , ϕ′
2 = −υΩ

1
1
1

 , ϕ′
3 = υΩ

 1
ω2

ω

 , ϕ′
4 = −υΩ

 1
ω2

ω

 , ϕ′
5 = υΩ

 1
ω
ω2

 , ϕ′
6 = −υΩ

 1
ω
ω2

 . (18)

In the real vector basis (12), these vacua are expressed following the same procedure used to obtain equation (16). We have

ϕ′
1,2 = ±υΩ(1, 0, 1, 0, 1, 0)T ,

ϕ′
3,4 = ±υΩ

(
1, 0,−1/2,−

√
3/2,−1/2,

√
3/2

)T
,

ϕ′
5,6 = ±υΩ

(
1, 0,−1/2,

√
3/2,−1/2,−

√
3/2

)T
.

(19)

These six vectors are subject to the constraint ∑6
i−1 ϕ′

i = 0, a property that characterizes an Octahedron with 6 vertices, 8 faces
and 12 edges. These edges represent the DWs separating the vacua as illustrated in the right panel of Figure 1. Let us verify
some of the properties of this regular Octahedron using the six vacua in equation (19). Consider the equal edge lengths of the
regular Octahedron (right panel of Figure 1); for instance, in the right triangular face defined by vertices {ϕ′

1, ϕ′
3, ϕ′

5}, we find
d13 = d15 = d35 =

√
6υΩ. Here, d13, d15, and d35 represent the lengths of edges between ϕ′

1 and ϕ′
3, ϕ′

1 and ϕ′
5, and ϕ′

3 and ϕ′
5,

respectively. Additionally, the three diagonals within the regular Octahedron are equal in the length. From the notations of Figure
1, we find d12 = d34 = d56 = 2

√
3υΩ, where d12, d34, and d56 represent the lengths of diagonals between ϕ′

2 and ϕ′
1, ϕ′

4 and ϕ′
3, and

ϕ′
6 and ϕ′

5, respectively.

4. NUMERICAL RESULTS AND SOLUTION TO THE DOMAIN WALL PROBLEM
This section comprises two parts. The first one is devoted to a numerical analysis of the neutrino sector, with a focus on neutrino
oscillation parameters and observables associated with neutrino masses, namely mββ, mβ, and ∑ mi. The second part is dedicated
to presenting a solution to the DW problem.

4.1. Neutrino Phenomenology
The current neutrino oscillation data exhibit a slight inclination towards the normal neutrino mass hierarchy with m1 being the
lightest neutrino mass. Consequently, our numerical investigation will be conducted within the NH framework. Let us start by
fixing our model parameters given by m0, kab, kϵb, θ, σ and ϕϵ. The parameters m0, kab, kϵb are allowed to varie in the ranges
[0, 1], [0, 1] and [−1, 1], respectively. The parameter θ is varied in the range [0, π/2] while the phases σ and ϕϵ are randomly varied
in the range [0, 2π]. Using the 3σ allowed range of the mixing angles from NuFit 5.0 global analysis [26] as input, and the their
expressions in equation (9), we can easily fix the Trimaximal parameters θ and σ. In the middle panel of Figure 2, we depict
the correlation between sin2 θ23 and σ with the color bar showing the values of θ. The obtained ranges for these parameters are:
sin2 θ23 ∈ [0.415, 0.610], θ ∈ [0.175, 0, 191] and σ ∈ [0.001, 6, 270], while the entire range of ϕϵ is permissible. From the range of
sin2 θ23, we deduce that both octants of the atmospheric angle are allowed in this model.
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FIGURE 2: Left: scatter plot of kab versus kϵb with the palette showing the allowed values of m0. Middle: scatter plot of sin2 θ23 versus
σ with the palette showing the allowed values of θ. Right: scatter plot of JCP versus δCP with the palette showing the allowed values
of sin2 θ13.

In the left panel of Figure 2, we show the correlation among the parameters kab, kϵb, and m0 implicated in the expressions of
neutrino masses in equation (8). These parameters are constrained using the current 3σ allowed range of the mass squared differ-
ences ∆m2

21 and ∆m2
31 where we find the following ranges: kab ∈ [0.634, 0.888], kϵb ∈ [−0.634, 0.634], and m0 [GeV] ∈ [0.007, 0.039].
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Regarding the size of CP violation in the lepton sector, it can be measured using the Jarlskog invariant parameter expressed in the
Particle Data Group (PDG) standard parametrization as JCP = 1

8 sin 2θ12 sin 2θ13 sin 2θ23 cos θ13 sin δCP where δCP is the CP violat-
ing phase [27]. In the right panel of Figure 2, we show a scatter plot of JCP versus δCP while the color bar displays the 3σ allowed
values of sin2 θ13. The obtained range for the Jarlskog invariant parameter is JCP ∈ [−0.035, 0, 030]. In the case of the Trimaximal
mixing matrix ŨTM2 , the Jarlskog parameter is expressed as JTM2

CP = −(1/6
√

3) sin 2θ23 sin σ. By matching this expression with the
one provided by the PDG, a relationship emerges among the atmospheric angle, the Dirac CP phase, and σ

sin σ = − sin 2θ23 sin δCP. (20)

By considering this equation and the 3σ allowed ranges for the atmospheric angle and the Dirac CP phase, we find that the exact
value of nπ for σ and δCP is excluded, with n can be any integer. Hence, it is evident from equation (20) that the CP conserving
values of δCP are not allowed in the current model, which implies also that the Jarlskog invariant parameter remains nonzero,
leading to the inevitable presence of CP violation in the current model.
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FIGURE 3: Left: mi and Σmi as a function of m1. Middle: the effective neutrino mass mβ versus m1. Right: |mββ| versus m1 where the
horizontal dashed lines represent the limits on |mββ| from current and future 0νββ decay experiments. The vertical and horizontal
dashed regions are disfavored by experimental data.

Now, we proceed to investigate the absolute neutrino mass spectrum through scatter plots. To determine all three neutrino
masses in the NH case, we represent m2 and m3 in terms of the lightest neutrino mass m1, namely m2 = (m2

1 + ∆m2
21)

1/2 and
m3 = (m2

1 + ∆m2
31)

1/2. Accordingly, for our numerical study, we use as input the upper bound on ∑ mi from the latest Planck data
given by ∑ mi < 0.12 eV at 95% Confidence Level (C.L) [28] as well as the 3σ allowed intervals for the mass squared differences
∆m2

21 and ∆m2
31 given by the NuFit 5.0 global analysis [26]. In the left panel of Figure 3, we present a scatter plot depicting the three

neutrino masses and their sum as a function of m1. The predicted ranges of these parameters are given by

0.004 ≲ m1 [eV] ≲ 0.030, 0.009 ≲ m2 [eV] ≲ 0.031, 0.049 ≲ m3 [eV] ≲ 0.058, 0.063 ≲ ∑ mi [eV] ≲ 0.119. (21)

The upper value for ∑ mi aligns with the upper limit reported by the Planck collaboration [28]. However, the lower value ∼0.063 eV
requires additional investigations, and may be tested in future experiments, such as CORE+BAO which aim to achieve a sensitivity
of 0.062 eV [29]. There are two additional avenues for exploring the absolute mass scale of neutrinos. The first one involves a direct
determination through the measurement of the electron energy spectrum near its endpoint region. This method currently stands as
the most sophisticated means to determine the effective electron antineutrino mass; it is expressed as m2

β = ∑i m2
i |Uei|2. The second

method relies on the search for 0νββ processes whose decay amplitude is proportional to the effective Majorana neutrino mass
defined as |mββ| = |∑i U2

eimi|. These two parameters can be represented as functions of the model parameters by substituting the
neutrino masses with their expressions from equation (8) in the following relations

m2
β =

1
3

(
2m2

1 cos2 θ + m2
2 + 2m2

3 sin2 θ
)

,
∣∣∣mββ

∣∣∣ = 1
3

∣∣∣2m1 cos2 θ + m2eiα + 2m3 sin2 θei(β−2σ)
∣∣∣ . (22)

It is important to note that the 0νββ decay processes serve as a means to probe the Majorana nature of neutrinos. Consequently, the
expression for |mββ| in equation (22) incorporates two additional Majorana phases, namely α and β. In Figure 3, the middle panel
displays the correlation between mβ and m1, and the right panel shows the correlation between mββ and m1. These scatter plots
emerge from varying the oscillation parameters within their 3σ range, while the Majorana phases are varied in the range of [0, 2π].
The predicted values for these observables are given by

0.009 ≲ mβ [eV] ≲ 0.031, 0.000049 ≲
∣∣∣mββ

∣∣∣ [eV] ≲ 0.02963. (23)

The values of mβ are considerably smaller than the KATRIN sensitivity (∼0.2 eV) [30], making them challenging to test in the near
future. Nevertheless, the upper limit of mβ is close to the expected sensitivity of the Project 8 collaboration ∼0.04 eV (depicted by
the blue dashed line in the middle panel of Figure 3) [31]. Consequently, future experiments with improved sensitivities could
potentially reach this upper bound. For |mββ|, the dashed lines in the right panel of Figure 3 show that our model values for are
currently lower than the sensitivities of some ongoing experiments. On the other hand, upcoming experiments like nEXO [32] and
GERDA Phase II [33] are expected to be able to test our predicted values of |mββ|.
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4.2. Solution to the DW Problem
As mentioned earlier, DWs are topological defects with surface-like characteristics that arise during the early stages of the Universe
when a discrete symmetry undergoes spontaneous breaking [4, 5]. In this work, we focused on two A4 breaking patterns resulting
in the formation of DWs in the charged lepton and neutrino sectors. Typically, the presence of DWs becomes problematic when
the scale of the SSB is lower than the inflationary scale ∼(1014–1016) GeV [34, 35, 36, 37]. Let us start by estimating the scale of
symmetry breaking that takes place in the charged lepton sector, precisely in the framework of A4 → ZT

3 . Recall that this breaking
pattern occurs when the flavon triplet Φ attains a VEV along the direction ⟨Φ⟩ = υΦ(1, 0, 0)T , where the broken part is given by
the Klein four group K4. Consequently, there exist four degenerate vacua {ϕ1, ϕ2, ϕ3, ϕ4} associated with this breaking pattern; see
equation (15). Furthermore, this breaking pattern yielded the charged lepton masses in equation (4). By examining, for instance, the
expression of the tau lepton mass (mτ = yτυdυΦ/Λ), we can derive an approximation for the ratio υΦ/Λ. Employing the value of
the tau lepton mass from the PDG, given as mτ = 1776.85 MeV [27], and under the reasonable assumption that yτυd ≲ 246 GeV, we
establish a lower limit for this ratio, which is expressed as υΦ/Λ > 0.007. Assuming that Λ is approximately the SUSY-GUT scale
MGUT ∼ 2 × 1016 GeV, we obtain a lower bound for the flavon VEV given as Φ > 1.4 × 1014 GeV. Consequently, in the charged
lepton sector, the discrete A4 symmetry breaks down during the inflationary scale. In this case, any produced DWs are inflated
away, leaving only the ZT

3 invariant ground state ϕ1 = ⟨Φ⟩.
Next, we analyze the DWs in the neutrino sector and estimate the scale of the symmetry breaking pattern A4 → ZS

2 in which the
broken part is given by ZTST2

2 ⋊ ZT
3 . The Majorana mass terms in the superpotential (1) are at the renormalizable level. We expect

a hierarchy among the VEVs of the NMSSM singlet and the flavon superfields with υS < υχ ≲ υΩ. This hierarchy makes sense
because υS is known to acquire a VEV around the scale of MSUSY . Additionally, it plays a role in introducing a slight deviation from
the TBM scheme, implying that its VEV should be smaller than those of the flavon fields. Consequently, the VEVs of flavons χ and
Ω can be reasonably placed in a range above MSUSY , say a range from 107 to 1010 GeV. This range ensures that the right-handed
neutrino masses (Mi) in equation (6) align with the type I seesaw mechanism. Achieving this involves selecting the appropriate
values for the free parameters Y0, λχ, λΩ, and β in υu = υ sin β with υ = 246 GeV. As a result, these VEVs are smaller than the
inflationary scale, leading to the inevitable creation of stable DWs in the neutrino sector. These walls are inconsistent with standard
cosmology and must be avoided [38]. This is known as the DW problem.

To address this issue, we follow the well-known solution suggested by Zel’dovich et al. [4], which relies on making the walls
unstable by assuming that the concerned discrete symmetry is only approximate. Specifically, introducing terms that break explic-
itly the discrete symmetry will create a small energy difference between the vacua. This can be achieved by introducing higher
dimensional operators 1

Mn
Pl

On+3 suppressed by powers of the Planck scale MPl leading to favor one of the vacua over the others,
and consequently the false vacua disappear before the walls take over as the main energy source in the Universe, see [9, 39, 40] for
more details and [41] for the case of NMSSM with Z3 discrete symmetry.

In our case, the leading order operators that break explicitly the ZTST2

2 ⋊ ZT
3 ⊂ A4 are of order five. Many operators fall into

this category, and all the possible terms can be chosen as given by a perturbation δWscal applied to the trilinear couplings that are
present in the A4 ⋊ Z3 invariant superpotential4 of the model given by

Wscal = µ2Φ2 + λ1SHu Hd + λ2S3 + λ3Ω3 + λ4Φ3 + λ5χ3 + λ6SΩ2 + λ7χΩ2. (24)

The most appropriate five dimensional operator that can break the full discrete symmetry group A4 × Z3 is expressed as

WNR =
λ′

3
M2

Pl

(
Ω5

)∣∣∣∣∣
(1,ω)

(25)

which transforms as a nontrivial A4 singlet. Since Ω transforms as ∼1Q2 under the extra Z3 symmetry, this operator also induces
the breaking of the latter.5

At the quantum level, the operator in equation (25) is represented by the Feynman diagram in Figure 4. Thus, By using the
Feynman rules of supergraphs [42, 43, 44], we obtain the following contribution to the effective scalar potential.6

Tthe operator described by equation (25) can be represented by the Feynman diagram illustrated in Figure 4. Employing the
Feynman rules of supergraphs [42, 43, 44], we derive the corresponding contribution to the effective scalar potential7

δVeff = M3
W (ηϕΩ + η̄ϕ̄Ω) + M2

W (ηFΩ + η̄F̄Ω) , (26)

where η =
λ2

3λ′
3

(16π2)3 and MW is the scale of the electroweak theory, while ϕΩ and FΩ are the scalar component and the F-term of
the flavon superfield Ω. Accordingly, the higher dimensional operator in equation (25) induces a linear term in the soft SUSY
scalar potential expressed as Vsoft ⊃ ηM3

W ϕΩ + h.c. Due to the nontrivial transformation of the triplet ϕΩ under the A4 × Z3 flavor
symmetry, the term in Vsoft breaks explicitly the symmetry into the Z2 group. This contribution induces an energy difference among
the six degenerate vacua in equation (18). The energetically dominant true vacuum, say ϕ′

1, becomes the domainat state causing
the remaining false vacua to disappear before the walls dominate the energy density of the Universe.

4It is crucial to emphasize that this scalar superpotential is restricted to the Higgs doublets Hu,d , the gauge singlet S , and the flavons χ, Ω, and Φ.
5The other higher dimensional operators of order five that can break explicitly the full flavor group are shown in Appendix C of [12].
6Details calculations on how to arrive at this effective potential are provided in Appendix C of [12], see also [42, 43, 44].
7Detailed calculations leading to the formulation of this effective potential can be found in Appendix C of [12], see also [42, 43, 44].
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FIGURE 4: The tadpole diagram for the higher dimensional operator in equation (25).

5. SUMMARY AND CONCLUSION
In this work, we have studied two primary aspects of SSB of non-Abelian discrete symmetries. In the first part, we investigate
neutrino phenomenology within a flavored NMSSM based on the flavor symmetry A4 × Z3. This involves extending the usual
NMSSM by incorporating three right-handed neutrino and two flavon superfields. Each superfield is assigned representations
under the A4 × Z3 group to engineer appropriate neutrino masses and mixing. Notably, we achieve this in a minimal manner in
the sense that we employ only two flavon fields and the NMSSM singlet S responsible for the deviation from the well-known
TBM pattern. Then, we delved into the phenomenological implications of the neutrino sector, particularly in the NH scheme. By
using the 3σ allowed ranges of the oscillation parameters, we showed through scatter plots the permissible ranges for various
observables, such as ∑i mi, mββ, and mβ. In the second part, our investigation focused on the breaking patterns of the A4 flavor
group and the formation of DWs as a result of its SSB. We showed for the breaking patterns A4 → Z3 (charged lepton sector) and
A4 → Z3 (neutrino sector) the explicit expressions of the degenerate vacua. Then, after representing these vacua as vertices in flavon
space, we depicted the DW networks by connecting them. The resultant configuration gives rise to Platonic solids, where vertices
representing degenerate vacua are linked by edges symbolizing DWs. By analyzing the breaking scale of the flavor symmetry,
we found that the DWs formed in the neutrino sector conflict with cosmological observations. To address this issue, we used the
well-known solution of breaking the flavor symmetry explicitly employing higher dimensional Planck suppressed operators.

Appendix A. THE A4 GROUP
In this appendix, we present some pertinent properties associated with the A4 flavor group, which prove to be indispensable in
the study of fermion masses and mixing as well as the formation of the DWs. The non-Abelian group A4 is generated by two
noncommuting generators S and T satisfying S2 = T3 = (ST)3 = I. In the Altarelli-Feruglio basis where the generator T is
diagonal, the three-dimensional representation matrices of S and T are given by [45]

T =

1 0 0
0 ω2 0
0 0 ω

 , S =

−1 2 2
2 −1 2
2 2 −1

 , (A.1)

where ω = e2πi/3. The group A4 has four irreducible representations: one triplet 3(−1,0) and three different singlets 1(1,1), 1(1,ω),
and 1(1,ω2). The indices in these representations correspond to the characters of the generators of A4 where the first entry repre-
sents the characters of S generator, while the second entry represents the characters of the T generator. For the one-dimensional
representations, these generators are expressed as

1(1,1) : S = 1, T = 1; 1(1,ω) : S = 1, T = ω2; 1(1,ω2) : S = 1, T = ω. (A.2)

The order of the A4 group is 12 and it possesses four distinct conjugacy classes given by

C1 = {e}, C2 =
{

S, TST−1, T−1ST
}

, C3 = {T, TS, ST, STS}, C4 =
{

T2, ST2, T2S, ST2S
}

, (A.3)

thereby providing the representation of the 12 elements within A4. Besides the elements of A4, a crucial aspect for investigating
the formation of DWs is identifying all the subgroups within the A4 symmetry. In addition to the trivial subgroup, the identity I,
and the whole group itself, A4 has three cyclic Z2 subgroups, four cyclic Z3 subgroups and one Klein-four group K4. In terms of
the elements of A4, these subgroups are given by

ZS
2 = {I, S}, ZTST−1

2 =
{

I, TST−1
}

, ZT2ST
2 =

{
I, T2ST

}
,

ZT
3 =

{
I, T, T2

}
, ZST

3 =
{

I, ST, T2S
}

, ZTS
3 =

{
I, TS, ST2

}
, ZSTS

3 =
{

I, STS, ST2S
}

,

KS,TST2

4 =
{

I, S, TST2, T2ST
}

.

(A.4)
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Let us now outline the rules governing the tensor product of irreducible representations within the A4 group. These represen-
tations are denoted by their basis characters and given as follows:

1(1,ωi) × 1(1,ω j) = 1(1,ωi+j), 3(−1,0) × 1(1,ωi) = 3(−1,0), 3(−1,0) × 3(−1,0) = 1(1,1) + 1(1,ω) + 1(1,ω2) + 3S
(−1,0) + 3A

(−1,0), (A.5)

where i, j = 0, 1, 2. The tensor product of two A4 triplets, denoted as (a1, a2, a3)
T and (b1, b2, b3)

T , is expressed explicitly asa1
a2
a3

⊗

b1
b2
b3

 = (a1b1 + a2b3 + a3b2)(1,1) + (a3b3 + a2b1 + a1b2)(1,ω) + (a2b2 + a1b3 + a3b1)(1,ω2)

+
1
3

2a1b1 − a2b3 − a3b2
2a3b3 − a2b1 − a1b2
2a2b2 − a1b3 − a3b1


3S
(−1,0)

+
1
2

a2b3 − a3b2
a1b2 − a2b1
a3b1 − a1b3


3A
(−1,0)

.

(A.6)
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